
U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

UCRL-ID-136515

ROSE: Compiler Support
for Object-Oriented
Frameworks

D. Quinlan

November 17,1999

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U. S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

ROSE: Compiler Support for Object-Oriented
Frameworks

Dan Quinlan’

Lawrence Livermore National Laboratory, Livermore, CA, USA,
dquinlan@llnl.gov,

WWW home page: http: //www. llnl . gov/CASC/people/quinlan/

Abstract. ROSE is a preprocessor generation tool for the support of
compile time performance optimizations in Overture The Overture
framework is an object-oriented environment for solving partial differ-
ential equations in two and three space dimensions. It is a collection of
C++ libraries that enables the use of finite difference and finite volume
methods at a level that hides the details of the associated data struc-
tures. Overture can be used to solve problems in complicated, moving
geometries using the method of overlapping grids. It has support for grid
generation, difference operators, boundary conditions, database access
and graphics. In this paper we briefly present Overture , and discuss
our approach toward performance within Overture and the A++P++
array class abstractions upon which Overture depends, this work repre-
sents some of the newest work.in Overture The results we present show
that the abstractions represented within Overture and the A++P++
array class library can be used to obtain application codes with perfor-
mance equivalent to that of optimized C and Fortran 77. ROSE, the
preprocessor generation tool, is general in its application to any object-
oriented framework or application and is not specific to Overture

1 Introduction

The Overture framework is a collection of C++ libraries that provide tools for
solving partial differential equations. Overture can be used to solve problems
in complicated, moving geometries using the method of overlapping grids (also
known as overset or Chimera grids). Overture includes support for geometry,
grid generation, difference operators, boundary conditions, database access and
graphics.

An overlapping grid consists of a set of logically rectangular grids that cover
a domain and overlap where they meet. This method has been used successfully
over the last decade and a half, primarily to solve problems involving fluid flow
in complex, often dynamically moving, geometries. Solution values at the overlap
are determined by interpolation. The overlapping grid approach is particularly
efficient for rapidly generating high-quality grids for moving geometries. As the
component grids move only the boundary points to be interpolated change, the
grid points do not have to be regenerated. The component grids are structured so

- Grid functions [lo]: storage of solution values, such as density, velocity,
pressure, defined at each point on the grid(s). Grid functions are derived
from A++/P++ array objects.

- Operators [2,9]: provide discrete representations of differential operators
and boundary conditions

- Grid generation [12]: the Ogen overlapping grid generator automatically
constructs an overlapping grid given the component grids.

- Plotting [13]: a high-level interface based on OpenGL allows for plotting
Overture objects.

- Adaptive mesh refinement: The AMR++ library is an object-oriented
library providing patch based adaptive mesh refinement capabilities within
Overture .

Solvers for partial differential equations, such as the OverBlown solver a,re
available from the Overture Web Site.

2.1 Array Operations

A++ and P++ [17,29] are array class libraries for performing array operations
in C++ in serial and parallel environments, respectively.

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not
requiring any modification to the C++ compiler or language. A++ provides a,n
object-oriented array abstraction specifically well suited to large-scale numerical
computation. It provides efficient use of multidimensional array objects which
serves to both simplify the development of numerical software and provide a
basis for the development of pa.rallel array abstractions. P++ is the parallel

array class library and shares a.n identical interface to A++, effectively allowing
A-t+ serial applications to be recompiled using P++ and thus run in parallel.
This provides a simple and elegant mechanism that allows serial code to be
reused in the parallel environment.

P++ provides a data parallel implementation of the array syntax represented
by the A++ array class library. To this extent it shares a lot of commonality
with FORTRAN 90 array syntax and the HPF programming model. However,
in contrast to HPF, P++ provides a more general mechanism for the distribu-
tion of arrays and greater control as required for the multiple grid applications
represented by both the overlapping grid model and the adaptive mesh refine-
ment (AMR) model. Additionally, current work is addressing the addition of
task parallelism as required for parallel adaptive mesh refinement.

Here is a simple example code segment that solves Poisson’s equation in
either a serial or parallel environment using the A++/P++ classes. Notice how
the Jacobi iteration for the entire array can be written in one statement.

// Solve u-xx + u-yy = f by a Jacobi Iteration
Range R(O,n) // define a range of indices: 0,1,2,...,n
floatArray u(R,R), f(R,R) // declare two two-dimensional arrays
f = 1.; u = 0.; h = 1./n; // initialize arrays and parameters

Range I(l,n-l), J(l,n-1); // define ranges for the interior

for(int iteration=O; iteration<iOO; iteration++ >
U(I,J) = .25*(~(I+1,J)+u(I-1,J~+u~I,J+l~+u~I,J-l~-f~I,J~*~h*h~~; // data parallel

Fig. 1. Hyperbolic surface grid generation is used to generate a smooth surface grid
over a surface coming from a CAD package.

2.2 Grid Generation

Overture has support for the creation of overlapping grids for complicated ge-
ometries. The process of generating an overlapping grid consists of two basic
steps. In the first step a number of component grids are generated. Each com-
ponent grid represents a portion of the geometry. The component grids must
overlap but otherwise can be created locally. Overture provides a collection of
Mapping classes that can be used to generate component grids including splines,
NURBS, bodies of revolution, hyperbolic grid generation, elliptic grid genera-
tion, trans-finite interpolation and so on. In addition we are working on methods
for reading files generated by CAD programs and generating grids. Figure (1)
shows how hyperbolic grid surface grid generation can be used to generate a
single smooth grid over a CAD surface described by a collection of trimmed
NURBS. This is accomplished with the aid of the SURGRD hyperbolic surface
grid generator[5].

Given the component grids, the overlapping grid then is constructed using
the Ogen grid generator. This latter step consists of determining how the differ-
ent component grids interpolate from each other, and in removing grid points
from holes in the domain, and removing unnecessary grid points in regions of

excess overlap. Ogen requires a minimal amount of user input. The grids in figure
(2) were all created with Ogen and represent some of the new grid generation
capabilities within Overture .

Fig. 2. Sample 2D and 3D overlapping grids generated with the Ogen grid generator.

3 Writing PDE solvers

This example demonstrates the power of the Overture framework by showing
a basically complete code that solves the partial differential equation (PDE)

Ut + au, + bzl, = v(u,, + uyy)

on an overlapping grid.

The PlotStuff object is used to interactively plot contours of the solution
at each time step[l3].

int main0
\C

CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf"); // read the grid in
floatCompositeGridFunction u(cg); // create a grid function
u=l.; // assign initial conditions
CompositeGridOperators op(cg); // create operators
u.setOperators(cg);
PlotStuff ps; // make an object for plotting
// --- solve a PDE ----
float t=O, dt=.005, a=l., b=l., nu=.i;
for-(int step=O; step<lOO; step++ >
\(

u+=dt*(-a*u.x()-b*u.yO+nu*(u.xx()+u.yy()));
t+=dt;
u.interpolateO; // interpolate overlapping boundaries
// apply the BC u=O on all boundaries
u.applyBoundaryCondition(O,dirichlet,allBoundaries,O.);
u.finishBoundaryConditions();
ps.contour(u); // plot contours of the solution

\I
return 0;

\I

The example solves the time-dependent equation explicitly. Other class li-
braries within the Overture framework simplify the solution of elliptic and
parabolic equations, the linear systems generated can be solved using any of
numerous numerical methods as appropriate including multigrid, and methods
made available within a number of external dense and sparse linear algebra pack-
ages including PETSc, and others. These are wrapped into the elliptic solver
library (Oges) within Overture .

4 Approach to Performance

The execution of array statements involves inefficiencies stemming from several
sources and the problem has been well documented, by many researchers[31,26,
271. Our approach to performance within Overture is to use a preprocessor
to introduce optimizing source-to-source transformations. The C++ source-to-
source preprocessor is built using ROSE; a tool we have designed and imple-
mented to build application specific preprocessors.

ROSE is a programmable source-to-source transformation tool built on top
of SAGE[21] for the optimization of C++ object-oriented frameworks. While we
have specific goals for this work within Overture , ROSE applies equally well
to any other object-oriented framework.

A common problem within object-oriented C++ scientific computing is that
the high level semantics of abstractions introduced (e.g. parallel array objects)
are ignored by the C++ compiler. Classes and overloaded operators are seen
as unoptimizable structures and function calls. Such abstractions can provide
for particularly simple development of large scale parallel scientific software, but
the lack of optimization greatly affects the performance and utility. Because
C++ lacks a mechanism to interact with the compiler, elaborate mechanisms
are often implemented within such parallel frameworks to introduce complex
template-based and/or runtime optimizations (such as runtime dependence anal-
ysis, deferred evaluation, runtime code generation, etc.). These approaches are
however not satisfactory since they are often marginally effective, require long
compile times, and/or are not sufficiently robust.

Preprocessors built, using ROSE have a few features tl1a.t stand out:

1. A hierarchy of grammars are specified as input to ROSE to build (tailor) the
preprocessor specific to a given object-oriented application, library, or frame-
work. ROSETTA, a code generator we have designed and implemented, is
used to generate an implementation of the grammars that are used inter-
nally. The hierarchy of grammars (and their implementations) are used to
construct separate program trees internally, one program tree per grammar,
each representing the user’s application. The program trees are edited as re-
quired to replace selected subtrees with other subtrees representing a specific
transformation. Quite complex criteria may be used to identify where trans-
formations may be applied, this mechanism is superior to pattern-recognition
of static subtrees within the program tree because it is more general and
readily tailored.

2. Transformations a,re specified which are then built into the user application
automatically where appropriate. The mechanism is designed to permit the
automated introduction of particularly complex transformations (such as
the cache based transformations specified in [28], space does not permit an
elaboration of this.

3. To simplify the debugging, preprocessor’s output (C++ code) is formatted
identical to the input application code (except for transformations that are
introduced, which have a default formatting). Numerous options are included
to tailor the formatting of the output code and to simplify working with
either its view directly within the debugger or its reference to the original
application source within the debugger. Comments and all C preprocessor
(cpp) control structures are preserved within the output C++ code.

4. The design of ROSE is simplified by leveraging both SAGE 2 and the
EDG[22] C++ front-end. EDG supplies numerous vendors with the C++
front-end for their compiler and represents the current best implementation
of C-t+. In principle this permits the preprocessors built by ROSE to ad-
dress the complete C++ language (as implemented by the best available
front-end). Modifications have been made to SAGE 2 to permit portabil-
ity and allow us to fulfill on a complete representation of the language. By
design, we leverage many low-level optimizations provided within modern

compilers while focusing on higher level optimizations largely out of reach
because traditional approaches can not leverage the semantics of high level
abstractions. In doing so, we slightly blur the distinction between a library
or framework, a language, and a compiler. But, because we leverage several
good quality tools the implementation is greatly simplified.

The approach is different from other open C++ compiler approaches be-
cause it provides a mechanism for defining high level grammars specific to an
object-oriented framework and a relatively simple approach to the specification
of large and complex transformations. A requirement for representing the pro-
gram tree within different user defined grammars is to have access to the full pro-
gram tree, this is not possible (as we best understand) within the OpenC++[20]
research work. By using SAGE 2 and ROSE the entire program tree, repre-
sented in each grammar, is made available; this permits more sophisticated pro-
gram analysis (when combined with the greater semantic knowledge of object-
oriented abstractions) and more complex transformations. We believe that the
techniques we have developed greatly complement the approaches represented
within OpenC++, in particular the Meta object mechanism represented within
that work. That SAGE is in many ways similar to the MPC++[lS] work, we be-
lieve we could have alternatively built off of that tool in place of SAGE (though
this is not clear). However, since SAGE 2 uses the EDG front-end we expect this
will simplify access to the complete C++ language. MPC++ addresses more of
the issues associated with easily introducing some transformations than SAGE,
but not of the complexity that we require for cache ba,sed transformations[28].
Each represent only a single grammar (the C++ grammar) and this is far too
complex (we believe) a starting point for the identification of where sophisti-
cated transformations can be introduced. The overall compile-time optimization
goals are related to ideas put forward by Ian Angus[25], but with numerous
distinguishing points:

1. We have decoupled the optimization from the back-end compiler to simplify
the design.

2. We have developed hierarchies of grammars to permit arbitrarily high level
abstractions to be represented with the greatest simplicity with the program
tree. The use of multiple program trees (one for each grammar) serves to
organize high level transformations.

3. We provide a simple mechanism to implement transformations.
4. We leverage the semantics of the abstractions to drive optimizations.
5. We have implemented and demonstrated the preprocessor approach on sev-

eral large numerical applications.

Finally, because ROSE is based ultimately (through SAGE) upon the EDG
C++ front-end, the full language is made available; consistent with the best
of the commercial vendor C++ compilers which most often use the same EDG
C++ front-end internally. However, some aspects of the complete support of
C++ within SAGE are incomplete.

A++ Performance with and without ROSE

Fig. 3. The use of a preprocessor (built using ROSE) can overcome the performance
degradation associated with binary evaluation of array operands. These results show
the use of ROSE with A++ and how the performance matches that of optimized C
code using the restrict keyword (ratio = 1). It has been shown previously that this is
equal to Fortran 77 performance. More sophisticated cache-based transformations are
also possible.

5 Results

Within our results we consider the following trivial five-point, stencil:

A(I,J) = c * (B(I-1,J) + B(I+i,J) + B(I,J) + B(I,J+l) + B(I,J+l) >;

In this code fragment, A and B are multidimensional array objects (distributed
across multiple processors if P++ is used). In this example, I and J are Range
objects that together specify an index space of the arrays A and B.

Figure 3 shows the range of performance associated with different size arrays
for the simple five point stencil operator on the Sun Ultra and Dee Alpha ma-
chines. The Sun Ultra was selected because it is a commonly available computer,
the Dee Alpha was selected because its cache design is particularly aggressive
and as a result it exemplifies the hardest machine to get good cache performance.
The results are in no way specific to this statement, moderate size applications
have been processed using preprocessors built with ROSE. The results compare
the ratios of A++ performance with and without the use of the ROSE prepro-
cessor to that of optimized C code. The optimized C code takes full advantage
of the bases of the arrays being identical and the unit strides, the A++ imple-
mentation does not, these very general subscript computations within the array
class implementation are compared to very specific and highly optimized sub-
script computations within the C code. This exaggerates the poorer performance
of the A++ statements, we do this to make clear that the performance of the

code output from the ROSE preprocessor is in fact highly optimized and is made
specific to the common bases of the operands (determined at compile time) and
the unit stride (determined at runtime). Our results show the relative difference
that it makes to compare such results. The resulting performance using ROSE
is nearly ident,ical to that of the optimized C code (ratio = l), this is not sur-
prising since t,he preprocessor transformation replaces the array statement with
the equivalent C code (highly optimized, and using restrict pointers where they
are supported).

A++ supports expression templates but this data is not presented here, in
general the expression template will approach the C performance within 90% for
short expressions and sufficiently large arrays. The combination of expression
templates with deferred evaluation reduces this to approx. 70% as reported in
[27] likely because of the required extra level of indirection to the data required
by the deferred evaluation mechanism (it is not clear if this will be fixed)‘.

An important distinguishing point bet,ween the two approaches is that within
larger applications the compile times are several orders of magnitude less for the
preprocessor approach since expression templates are not used[31]. In practice
the time taken to pre-process an application is even much less than the compile
time where no templates are used (expression templa.tes or otherwise) (a few
seconds, and is not noticeable). This is not surprising since the preprocessing
consists of only a few of the steps taken internally within a compiler, and excludes
the most time consuming back-end optimization (to build the object code).

6 Conclusions

Overture is capable of addressing the complexity of numerous difficult sorts
of simulations within scientific computing. We have demonstrated that power-
ful abstractions can be developed that can greatly simplify the development of
previously complex (intractable) simulations. New features within the grid gen-
erator in Overture have made much more complicated grids possible. While
the abstractions presenting within Overture are the principle motivation for
its use, the performance of Overture is critical and is dominated by the per-
formance of the A++P++ array class. Many years of work have gone into the
development of optimization techniques for the array class library. The prepro-
cessor approach is by far the most successful so far, however more work remains
to make preprocessors easier to build and more robust.

The results we have presented demonstrate the optimization of array class
statements. All sizes of arrays benefit, their processing with ROSE makes each
equivalent to the performance of optimized C code (using restrict). Previously
in [30] we showed that this is equivalent to FORTRAN 77 performance.

Expression Templates is an alternative mechanism that can be used to op-
timize array statements, but the mechanism is problematic[31]. More research

1 This was the experience with expression templates when it was combined with the
deferred evaluation mechanism in A++P++.

is required (and being done by others) to address problems within the expres-
sion template mechanism. More work is similarly required to provide improved
compile-time optimization solutions.

7 Software Availability

The Overture framework and documentation is available for public distribution
from the web site, http: //www. llnl . gov/casc/Overture. The OverBlown
flow solver is also available.

References

1. M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrody-
namics, J. Comp. Phys., 82 (1989), pp. 64-84.

2. -, Classes for finite volume operators and projection operators, LANL unclas-
sified report 96-3470, Los Alamos National Laboratory, 1996.

3. D. L. Brown, Geoffrey S. Chesshire, William D. Henshaw and Daniel J. Quinlan,
Overture : An Object Oriented Software System for Solving Partial Differential
Equations in Serial and Parallel Environments, Proceedings of the Eight SIAM
Conference on Parallel Processing for Scientific Computing, 1997.

4. , D. L. Brown, William D. Henshaw and Daniel .J. Quinlan, Overture : An Object
Oriented Framework for Solving Partial Differential Equations, Scientific Comput-
ing in Object-Oriented Parallel Environments, Springer Lecture Notes in Computer
Science, 1343, 1997.

5. W.M. Chan and P.G. Buning, A Hyperbolic Surface Grid Generation Scheme and
Its Applications, AIAA paper 94-2208, 1994.

6. G. Chesshire and W. D. Henshaw, Composite overlapping meshes for the solution
of partial differential equations, J. Comp. Phys., 90 (1990), pp. l-64.

7. G. S. Chesshire, Overture : the grid classes, LANL unclassified report 96-3708,
Los Alamos National Laboratory, 1996.

8. Diffpack homepage, http://www.nobjects.com/diffpack.
9. -, Finite difference operators and boundary conditions for Overture, user

guide, version 1.00, LANL unclassified report 96-3467, Los Alamos National Lab-
oratory, 1996.

10. -, Grid, GridFunction and Interpolant classes for Overture , AMR++ and
CMPGRD, user guide, version 1.00, LANL unclassified report 96-3464, Los Alamos
National Laboratory, 1996.

11. -, Mappings for Overture : A description of the mapping class and documen-
tation for many useful mappings, LANL unclassified report 96-3469, Los Alamos
National Laboratory, 1996.

12. -, Ogen: an overlapping grid generator for Overture, LANL unclassified report
96-3466, Los Alamos National Laboratory, 1996.

13. -, PlotStuff: a class for plotting stuff from Overture , LANL unclassified
report 96-3893, Los Alamos National Laboratory, 1996.

14. Satish Balay, William Gropp, Lois Curfman McInnes and Barry
Smith, The Portable Extensible Toolkit for Scientific Computation,
http://www.mcs.anl.gov/petsc/petsc.html.

15. Steve Karmesin et.al, Parallel Object Oriented Methods and Applications,
http://www.acl.lanl.gov/PoomaFramework.

16. D. Quinlan, Adaptive Mesh Refin.ement for Distributed Parallel Processors, PhD
thesis, University of Colorado, Denver, June 1993.

17. -, A++/P++ manual, LANL Unclassified Report 95-3273, Los Alamos Na-
tional Laboratory, 1995.

18. Xabier Garaizar, Richard Hornung arid Scott Kohn, Structured Adaptive Mesh
Rcfiriement Applications Infracture, http: //www. llnl . gov/casc/SAMRAI.

19. Ishkawa et. al. Design and Implementation of Metalevel Architecture in C++ -
MPG++ Approach -. In Proceeding of Reflection’96 Conference, April 1996 more
info available at: http://pd swww.rwcp.or.jp/mpc++/mpc++.html

20. Shigeru Chiba Macro Processing in Object-Oriented Languages In Proc.
of Technology of Object-Oriented Languages and Systems (TOOLS Pa-
cific ‘98), Australia, November, IEEE Press, 1998. more info available at:
http://www.hlla.is.tsukuba.ac.jp/ chiba/openc++.html

21. B. Francois et. al. Sage++: An object-oriented toolkit and class library for building
fortran and c++ restructuring tools. In Proceedings of the Second Annual Object-
Oriented Numerics conference, 1994.

22. Edison Design Group http://www.edg.com
23. Rebecca Parsons and Dan Quinlan. A++/P++ array classes for architecture in-

dependent finite difference computations. In Proceedings of the Second Annual
Object-Oriented Numerics Conference (OONSKI’94), April 1994.

24. Dan Quinlan and Rebecca Parsons. Run-time recognition of task parallelism within
the P++ parallel array class library. In Proceedings of the Conference on Parallel
Scalable Libraries, 1993.

25. Ian Angus Applications Demand Class-Specific Optimizations: The C++ Compiler
Can Do More. In Proceedings of the Object-Oriented Numerics Conference, (OON-
SKI) 1993

26. Todd Veldhuizen Arrays in Blitz++ In Proceeding of the Second International
Symposium, ISCOPE 98, Santa Fe, NM December 1998

27. Karmesin, et al. Array Design nnd Expression Evaluation in POOMA II. In
Proceeding of the Second International Symposium, ISCOPE 98, Sauta Fe, NM
December 1998

28. Bassetti, F., Davis, K., Quinlan, D. Optimizing Transformations of Stencil Oper-
ations for Parallel Object-Oriented Scientific Frameworlcs on Cache-Based Archi-
tectures In Proceedings of the ISCOPE’ Conference, Santa Fe, New Mexico, Dee
13-16 1998

29. Lemke, M., Quinlan, D., P++, a C++ Virtual Shared Grids Based Programming
Environment for Architecture-Independent Development of Structured Grid Appli-
cations In Proceedings of the CONPAR/VAPP V, September 1992, Lyon, France;
published in Lecture Notes in Computer Science, Springer Verlag, September 1992.

30. Bassetti, F., Davis, K., Quinlan, D. Toward FORTRAN 77 Performance From
Object-Oriented C++ Scientific Frameworks In Proceedings of the HPC’98 Con-
ference, Boston, Mass. April 5-9, 1998

31. Bassetti, F., Davis, K., Quinlan, D. A Comparison of Performance-enhancing
Strategies for Parallel Numerical Object-Oriented Frameworks In Proceedings of the
first International Scientific Computing in Object-Oriented Parallel Environments
(ISCOPE) Conference, Marina de1 Rey, California, Dee, 1997

